Skip to main content
  1. Data Science Courses/

Natural Language Processing

·234 words·2 mins· loading · ·
ML Courses Machine Learning ML Courses

On This Page

Table of Contents
Share with :

Natural Language Processing

Natural Language Processing (NLP)
#

Foundation of Natural Language Processing
#

  • Overview computational linguistic.
  • History of NLP
  • Why NLP
  • Use of NLP
  • Language modelling with N-gram
  • Spelling correction
  • Neural networks and neural language models
  • Parts-of-Speech tagging
  • Syntactic parsing
  • Language semantics
  • Computational semantics

Text Analytics, Processing, and Predictive Modelling
#

  • Introduction to text analytics (text encoding, regular expressions*, word frequencies & stop words, tokenization, bag-of-words representation, stemming & lemmatization, TF-IDF)
  • The Naive Bayes algorithm (Bayes’ theorem and its building blocks, Naive Bayes for text classification)

Text Processing Importing text.
#

  • Web scrapping.
  • Text processing
  • Understanding regex.
  • Text normalization
  • Word count.
  • Frequency distribution.
  • Text annotation.
  • Use of annotator.
  • String tokenization
  • Annotator creation.
  • Sentence processing.
  • Lemmatization in text processing
  • POS.
  • Named entity recognition
  • Dependency parsing in text.
  • Sentimental analysis

Word embedding
#

  • Word embedding
  • Co-occurrence vectors
  • Word2vec
  • Doc2vec

RNN for NLP
#

  • Recurrent neural networks.
  • Long short term memory (LSTM)
  • Bi LSTM.
  • Stacked LSTM
  • GRU implementation.
  • Building a story writer using character level RNN.

Attention based model
#

  • Seq2Seq.
  • Encoders and decoders.
  • Attention mechanism.
  • Attention neural networks
  • Self-attention

Transfer learning in NLP
#

  • Introduction to transformers.
  • Bert model.
  • Elmo model.
  • GPT2 model
  • GPT3 model.
  • Albert model.
  • Distilbert model

Transformers for NLP
#

  • GPT3
  • BERT

NLP Libraries
#

Spacy
#

  • Spacy overview
  • Spacy function
  • Spacy function implementation in text processing.
  • Pos tagging, challenges and accuracy.
  • Entities and named entry recognition
  • Interpolation, language models
  • NLTK
  • Text blob
  • Stanford NLP
Dr. Hari Thapliyaal's avatar

Dr. Hari Thapliyaal

Dr. Hari Thapliyal is a seasoned professional and prolific blogger with a multifaceted background that spans the realms of Data Science, Project Management, and Advait-Vedanta Philosophy. Holding a Doctorate in AI/NLP from SSBM (Geneva, Switzerland), Hari has earned Master's degrees in Computers, Business Management, Data Science, and Economics, reflecting his dedication to continuous learning and a diverse skill set. With over three decades of experience in management and leadership, Hari has proven expertise in training, consulting, and coaching within the technology sector. His extensive 16+ years in all phases of software product development are complemented by a decade-long focus on course design, training, coaching, and consulting in Project Management. In the dynamic field of Data Science, Hari stands out with more than three years of hands-on experience in software development, training course development, training, and mentoring professionals. His areas of specialization include Data Science, AI, Computer Vision, NLP, complex machine learning algorithms, statistical modeling, pattern identification, and extraction of valuable insights. Hari's professional journey showcases his diverse experience in planning and executing multiple types of projects. He excels in driving stakeholders to identify and resolve business problems, consistently delivering excellent results. Beyond the professional sphere, Hari finds solace in long meditation, often seeking secluded places or immersing himself in the embrace of nature.

Comments:

Share with :

Related

AI for Prospective Email Writing
·491 words·3 mins· loading
ML Courses TensorFlow Lite Android Development
AI for Prospective Email Writing # Course Objective # Equip participants with the skills to draft …
GenAI for Cybersecurity
·526 words·3 mins· loading
ML Courses TensorFlow Lite Android Development
GenAI for Cybersecurity # Course Overview: Here’s a simplified and enriched version of your course …
Train Tensorflow Lite Models for Android
·852 words·4 mins· loading
ML Courses TensorFlow Lite Android Development
Course Title: Developing Solutions with Agentic AI # Course Outline # Module 1: Introduction to …
AI Powered Account Management Strategies
·421 words·2 mins· loading
ML Courses Artificial Intelligence Account Management
Program Outline: AI Powered Account Management Strategies # Duration: # 2 Days Course Audience: # …
Generative AI for Client and Stakeholder Engagement
·412 words·2 mins· loading
ML Courses Generative AI Stakeholder Engagement
Program Outline: AI Powered Client and Stakeholder Engagement # Duration: # 2 Days Course Audience: …